An accelerated MDM algorithm for SVM training

نویسندگان

  • Álvaro Barbero Jiménez
  • Jorge López Lázaro
  • José R. Dorronsoro
چکیده

In this work we will propose an acceleration procedure for the Mitchell–Demyanov–Malozemov (MDM) algorithm (a fast geometric algorithm for SVM construction) that may yield quite large training savings. While decomposition algorithms such as SVMLight or SMO are usually the SVM methods of choice, we shall show that there is a relationship between SMO and MDM that suggests that, at least in their simplest implementations, they should have similar training speeds. Thus, and although we will not discuss it here, the proposed MDM acceleration might be used as a starting point to new ways of accelerating SMO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel Frank-Wolfe algorithm. Analysis and applications to large-scale SVM training

Recently, there has been a renewed interest in the machine learning community for variants of a sparse greedy approximation procedure for concave optimization known as the Frank-Wolfe (FW) method. In particular, this procedure has been successfully applied to train large-scale instances of non-linear Support Vector Machines (SVMs). Specializing FW to SVM training has allowed to obtain efficient...

متن کامل

On the Equivalence of the SMO and MDM Algorithms for SVM Training

SVMtraining is usually discussed under twodifferent algorithmic points of view. The first one is provided by decomposition methods such as SMO and SVMLight while the second one encompasses geometric methods that try to solve a Nearest Point Problem (NPP), the Gilbert– Schlesinger–Kozinec (GSK) andMitchell–Demyanov–Malozemov (MDM) algorithms being the most representative ones. In this work we wi...

متن کامل

Incremental accelerated gradient methods for SVM classification: study of the constrained approach

We investigate constrained first order techniques for training Support Vector Machines (SVM) for online classification tasks. The methods exploit the structure of the SVM training problem and combine ideas of incremental gradient technique, gradient acceleration and successive simple calculations of Lagrange multipliers. Both primal and dual formulations are studied and compared. Experiments sh...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008